Before Stanford, I worked with John Lafferty at the University of Chicago. Congratulations to Prof. Aaron Sidford for receiving the Best Paper Award at the 2022 Conference on Learning Theory (COLT 2022)! I am generally interested in algorithms and learning theory, particularly developing algorithms for machine learning with provable guarantees. It was released on november 10, 2017. SHUFE, Oct. 2022 - Algorithm Seminar, Google Research, Oct. 2022 - Young Researcher Workshop, Cornell ORIE, Apr. Summer 2022: I am currently a research scientist intern at DeepMind in London. [name] = yangpliu, Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence, Maximum Flow and Minimum-Cost Flow in Almost Linear Time, Online Edge Coloring via Tree Recurrences and Correlation Decay, Fully Dynamic Electrical Flows: Sparse Maxflow Faster Than Goldberg-Rao, Discrepancy Minimization via a Self-Balancing Walk, Faster Divergence Maximization for Faster Maximum Flow. Gregory Valiant Homepage - Stanford University Anup B. Rao - Google Scholar I am a senior researcher in the Algorithms group at Microsoft Research Redmond. Iterative methods, combinatorial optimization, and linear programming MI #~__ Q$.R$sg%f,a6GTLEQ!/B)EogEA?l kJ^- \?l{ P&d\EAt{6~/fJq2bFn6g0O"yD|TyED0Ok-\~[`|4P,w\A8vD$+)%@P4 0L ` ,\@2R 4f In September 2018, I started a PhD at Stanford University in mathematics, and am advised by Aaron Sidford. This is the academic homepage of Yang Liu (I publish under Yang P. Liu). In Symposium on Theory of Computing (STOC 2020) (arXiv), Constant Girth Approximation for Directed Graphs in Subquadratic Time, With Shiri Chechik, Yang P. Liu, and Omer Rotem, Leverage Score Sampling for Faster Accelerated Regression and ERM, With Naman Agarwal, Sham Kakade, Rahul Kidambi, Yin Tat Lee, and Praneeth Netrapalli, In International Conference on Algorithmic Learning Theory (ALT 2020) (arXiv), Near-optimal Approximate Discrete and Continuous Submodular Function Minimization, In Symposium on Discrete Algorithms (SODA 2020) (arXiv), Fast and Space Efficient Spectral Sparsification in Dynamic Streams, With Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri, and Jakab Tardos, In Conference on Neural Information Processing Systems (NeurIPS 2019), Complexity of Highly Parallel Non-Smooth Convex Optimization, With Sbastien Bubeck, Qijia Jiang, Yin Tat Lee, and Yuanzhi Li, Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG, A Direct (1/) Iteration Parallel Algorithm for Optimal Transport, In Conference on Neural Information Processing Systems (NeurIPS 2019) (arXiv), A General Framework for Efficient Symmetric Property Estimation, With Moses Charikar and Kirankumar Shiragur, Parallel Reachability in Almost Linear Work and Square Root Depth, In Symposium on Foundations of Computer Science (FOCS 2019) (arXiv), With Deeparnab Chakrabarty, Yin Tat Lee, Sahil Singla, and Sam Chiu-wai Wong, Deterministic Approximation of Random Walks in Small Space, With Jack Murtagh, Omer Reingold, and Salil P. Vadhan, In International Workshop on Randomization and Computation (RANDOM 2019), A Rank-1 Sketch for Matrix Multiplicative Weights, With Yair Carmon, John C. Duchi, and Kevin Tian, In Conference on Learning Theory (COLT 2019) (arXiv), Near-optimal method for highly smooth convex optimization, Efficient profile maximum likelihood for universal symmetric property estimation, In Symposium on Theory of Computing (STOC 2019) (arXiv), Memory-sample tradeoffs for linear regression with small error, Perron-Frobenius Theory in Nearly Linear Time: Positive Eigenvectors, M-matrices, Graph Kernels, and Other Applications, With AmirMahdi Ahmadinejad, Arun Jambulapati, and Amin Saberi, In Symposium on Discrete Algorithms (SODA 2019) (arXiv), Exploiting Numerical Sparsity for Efficient Learning: Faster Eigenvector Computation and Regression, In Conference on Neural Information Processing Systems (NeurIPS 2018) (arXiv), Near-Optimal Time and Sample Complexities for Solving Discounted Markov Decision Process with a Generative Model, With Mengdi Wang, Xian Wu, Lin F. Yang, and Yinyu Ye, Coordinate Methods for Accelerating Regression and Faster Approximate Maximum Flow, In Symposium on Foundations of Computer Science (FOCS 2018), Solving Directed Laplacian Systems in Nearly-Linear Time through Sparse LU Factorizations, With Michael B. Cohen, Jonathan A. Kelner, Rasmus Kyng, John Peebles, Richard Peng, and Anup B. Rao, In Symposium on Foundations of Computer Science (FOCS 2018) (arXiv), Efficient Convex Optimization with Membership Oracles, In Conference on Learning Theory (COLT 2018) (arXiv), Accelerating Stochastic Gradient Descent for Least Squares Regression, With Prateek Jain, Sham M. Kakade, Rahul Kidambi, and Praneeth Netrapalli, Approximating Cycles in Directed Graphs: Fast Algorithms for Girth and Roundtrip Spanners. In Symposium on Foundations of Computer Science (FOCS 2017) (arXiv), "Convex Until Proven Guilty": Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions, With Yair Carmon, John C. Duchi, and Oliver Hinder, In International Conference on Machine Learning (ICML 2017) (arXiv), Almost-Linear-Time Algorithms for Markov Chains and New Spectral Primitives for Directed Graphs, With Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B. Rao, and, Adrian Vladu, In Symposium on Theory of Computing (STOC 2017), Subquadratic Submodular Function Minimization, With Deeparnab Chakrabarty, Yin Tat Lee, and Sam Chiu-wai Wong, In Symposium on Theory of Computing (STOC 2017) (arXiv), Faster Algorithms for Computing the Stationary Distribution, Simulating Random Walks, and More, With Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, and Adrian Vladu, In Symposium on Foundations of Computer Science (FOCS 2016) (arXiv), With Michael B. Cohen, Yin Tat Lee, Gary L. Miller, and Jakub Pachocki, In Symposium on Theory of Computing (STOC 2016) (arXiv), With Alina Ene, Gary L. Miller, and Jakub Pachocki, Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm, With Prateek Jain, Chi Jin, Sham M. Kakade, and Praneeth Netrapalli, In Conference on Learning Theory (COLT 2016) (arXiv), Principal Component Projection Without Principal Component Analysis, With Roy Frostig, Cameron Musco, and Christopher Musco, In International Conference on Machine Learning (ICML 2016) (arXiv), Faster Eigenvector Computation via Shift-and-Invert Preconditioning, With Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, and Praneeth Netrapalli, Efficient Algorithms for Large-scale Generalized Eigenvector Computation and Canonical Correlation Analysis. Aaron Sidford's Profile | Stanford Profiles
Google Scholar Digital Library; Russell Lyons and Yuval Peres. Prior to that, I received an MPhil in Scientific Computing at the University of Cambridge on a Churchill Scholarship where I was advised by Sergio Bacallado. The Complexity of Infinite-Horizon General-Sum Stochastic Games, With Yujia Jin, Vidya Muthukumar, Aaron Sidford, To appear in Innovations in Theoretical Computer Science (ITCS 2023) (arXiv), Optimal and Adaptive Monteiro-Svaiter Acceleration, With Yair Carmon, Danielle Hausler, Arun Jambulapati, and Yujia Jin, To appear in Advances in Neural Information Processing Systems (NeurIPS 2022) (arXiv), On the Efficient Implementation of High Accuracy Optimality of Profile Maximum Likelihood, With Moses Charikar, Zhihao Jiang, and Kirankumar Shiragur, Improved Lower Bounds for Submodular Function Minimization, With Deeparnab Chakrabarty, Andrei Graur, and Haotian Jiang, In Symposium on Foundations of Computer Science (FOCS 2022) (arXiv), RECAPP: Crafting a More Efficient Catalyst for Convex Optimization, With Yair Carmon, Arun Jambulapati, and Yujia Jin, International Conference on Machine Learning (ICML 2022) (arXiv), Efficient Convex Optimization Requires Superlinear Memory, With Annie Marsden, Vatsal Sharan, and Gregory Valiant, Conference on Learning Theory (COLT 2022), Sharper Rates for Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Method, Conference on Learning Theory (COLT 2022) (arXiv), Big-Step-Little-Step: Efficient Gradient Methods for Objectives with Multiple Scales, With Jonathan A. Kelner, Annie Marsden, Vatsal Sharan, Gregory Valiant, and Honglin Yuan, Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching, With Arun Jambulapati, Yujia Jin, and Kevin Tian, International Colloquium on Automata, Languages and Programming (ICALP 2022) (arXiv), Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary, With Aaron Bernstein, Jan van den Brand, Maximilian Probst, Danupon Nanongkai, Thatchaphol Saranurak, and He Sun, Faster Maxflow via Improved Dynamic Spectral Vertex Sparsifiers, With Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, and Richard Peng, In Symposium on Theory of Computing (STOC 2022) (arXiv), Semi-Streaming Bipartite Matching in Fewer Passes and Optimal Space, With Sepehr Assadi, Arun Jambulapati, Yujia Jin, and Kevin Tian, In Symposium on Discrete Algorithms (SODA 2022) (arXiv), Algorithmic trade-offs for girth approximation in undirected graphs, With Avi Kadria, Liam Roditty, Virginia Vassilevska Williams, and Uri Zwick, In Symposium on Discrete Algorithms (SODA 2022), Computing Lewis Weights to High Precision, With Maryam Fazel, Yin Tat Lee, and Swati Padmanabhan, With Hilal Asi, Yair Carmon, Arun Jambulapati, and Yujia Jin, In Advances in Neural Information Processing Systems (NeurIPS 2021) (arXiv), Thinking Inside the Ball: Near-Optimal Minimization of the Maximal Loss, In Conference on Learning Theory (COLT 2021) (arXiv), The Bethe and Sinkhorn Permanents of Low Rank Matrices and Implications for Profile Maximum Likelihood, With Nima Anari, Moses Charikar, and Kirankumar Shiragur, Towards Tight Bounds on the Sample Complexity of Average-reward MDPs, In International Conference on Machine Learning (ICML 2021) (arXiv), Minimum cost flows, MDPs, and 1-regression in nearly linear time for dense instances, With Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, and Zhao Song, Di Wang, In Symposium on Theory of Computing (STOC 2021) (arXiv), Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers, In Symposium on Discrete Algorithms (SODA 2021) (arXiv), Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration, In Innovations in Theoretical Computer Science (ITCS 2021) (arXiv), Acceleration with a Ball Optimization Oracle, With Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, and Kevin Tian, In Conference on Neural Information Processing Systems (NeurIPS 2020), Instance Based Approximations to Profile Maximum Likelihood, In Conference on Neural Information Processing Systems (NeurIPS 2020) (arXiv), Large-Scale Methods for Distributionally Robust Optimization, With Daniel Levy*, Yair Carmon*, and John C. Duch (* denotes equal contribution), High-precision Estimation of Random Walks in Small Space, With AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, and Salil P. Vadhan, In Symposium on Foundations of Computer Science (FOCS 2020) (arXiv), Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs, With Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, Zhao Song, and Di Wang, In Symposium on Foundations of Computer Science (FOCS 2020), With Yair Carmon, Yujia Jin, and Kevin Tian, Unit Capacity Maxflow in Almost $O(m^{4/3})$ Time, Invited to the special issue (arXiv before merge)), Solving Discounted Stochastic Two-Player Games with Near-Optimal Time and Sample Complexity, In International Conference on Artificial Intelligence and Statistics (AISTATS 2020) (arXiv), Efficiently Solving MDPs with Stochastic Mirror Descent, In International Conference on Machine Learning (ICML 2020) (arXiv), Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond, With Oliver Hinder and Nimit Sharad Sohoni, In Conference on Learning Theory (COLT 2020) (arXiv), Solving Tall Dense Linear Programs in Nearly Linear Time, With Jan van den Brand, Yin Tat Lee, and Zhao Song, In Symposium on Theory of Computing (STOC 2020). Yujia Jin.
Enrichment of Network Diagrams for Potential Surfaces. In September 2018, I started a PhD at Stanford University in mathematics, and am advised by Aaron Sidford.
(arXiv pre-print) arXiv | pdf, Annie Marsden, R. Stephen Berry. Our method improves upon the convergence rate of previous state-of-the-art linear programming . I hope you enjoy the content as much as I enjoyed teaching the class and if you have questions or feedback on the note, feel free to email me. In Symposium on Discrete Algorithms (SODA 2018) (arXiv), Variance Reduced Value Iteration and Faster Algorithms for Solving Markov Decision Processes, Efficient (n/) Spectral Sketches for the Laplacian and its Pseudoinverse, Stability of the Lanczos Method for Matrix Function Approximation. Deeparnab Chakrabarty, Andrei Graur, Haotian Jiang, Aaron Sidford.